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Abstract
We give a direct derivation for the information–disturbance tradeoff in
estimating a maximally entangled state, which was first obtained by Sacchi
(2006 Phys. Rev. Lett. 96 220502) in terms of the covariant positive operator
valued measurement (POVM) and Jamiołkowski’s isomorphism. We find that,
the Cauchy–Schwarz inequality, which is one of the most powerful tools in
deriving the tradeoff for a single-particle pure state still plays a key role in
the case of the maximal entanglement estimation. Our result shows that the
inequality becomes equality when the optimal tradeoff is achieved. Moreover,
we demonstrate that such a tradeoff is physically achievable with a quantum
circuit that only involves single- and two-particle logic gates and single-particle
measurements.

PACS number: 03.67.−a

1. Introduction

Quantum measurement is one of the most important issues in quantum information processing,
such as quantum key distribution, quantum teleportation and, especially, quantum computation.
However, quantum mechanics further imposes some limitations on quantum information
extraction from the unknown quantum state. In particular, there is not a quantum measurement
on the quantum system without introducing any disturbance. The more information we gain,
the more its state has to be disturbed. Actually, there exists a precise tradeoff between the
amount of information we gain and the disturbance caused on the quantum system. Since it was
first proposed in [1, 2], the tradeoff between information gain and quantum state disturbance
has received a wide and extensive attention [3–19] .
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In [3], Banaszek reported an optimal tradeoff between information gain and state
disturbance for a completely unknown finite-dimensional single-particle pure state. In this
study, the tradeoff in the scenario of quantum state estimation is exactly obtained. Following
this seminal work, a lot of work has been done in deriving the optimal tradeoff for different sets
of unknown quantum states. This includes the optimal quantum estimation in the following
cases: (1) a partially known finite dimensional pure state on circles [4]; (2) many copies of
identically prepared pure qubits [5, 6]; (3) completely unknown maximally entangled bipartite
pure state [7]; (4) Gaussian [8] or Non-Gaussian [9] continuous-variable systems; and (5) spin
coherent states [10] and recently a tradeoff in the quantum discrimination of non-orthogonal
pure state has also been reported [11, 12]. Moreover, explicit physical schemes to achieve
the optimal tradeoff have already been proposed. In [13, 14], it was shown that the optimal
tradeoff for completely unknown single-particle pure state can be obtained by a quantum
circuit that consists of single- and two-qudit logic gates and individual measurements. In
laboratory, experiments achieving the optimal tradeoff for photon polarization qubit [15] and
for coherent state quantum system [16] have also been reported.

Let us now give a general formalism of the problem. Assuming a quantum state
ρ = |ψ〉〈ψ | is homogeneously picked (or according to an assigned a priori probabilistic
distribution) from a given set � , one performs a quantum measurement on the unknown state
and then infers what state will be based on his measurement outcome. Consequently, the
priori quantum state is inevitably distorted. Both the information one gains and the amount of
the disturbance can be quantified with fidelities. In precise, let us consider the most general
quantum measurement, i.e., positive operator valued measurement (POVM) [20, 21]. Such a
measurement scheme is always described by a set of positive operators

{∏
r

}
acting on the

unknown quantum state ρ. The measurement is probabilistic: the probability of the result r
is pr = Tr

[∏
r ρ
]
. When the measurement outcome r is observed, the general form for the

post-measurement quantum state can be written in the form of a series of operators {Arµ}:
ρ ′

r =
∑

µ

ArµρA†
rµ

/
pr, (1)

where the operators Aµ are named as Kraus operators and follow the relation
∏

r =∑
µ Arµ

†Akµ. The trace-preserving condition of the measurement can be given by
∑

r

∏
r = I .

Conditional on the measurement outcome, one can establish some inference rule being
r → ρr = |φr〉〈φr | as an estimation of the unknown state ρ. Thus, the fidelity (or the
overlap) between inferred state |φr〉 and ρ is a good characterization of the information one
gain from the measurement. By averaging over all the possible outcomes, the information
gain, for a given input ρ, can be written as

Gρ =
∑
rµ

Tr
[
A†

rµArµρ
]
Tr[ρρr ]. (2)

Similarly, the amount of disturbance caused by the measurement can be quantified by
evaluating the overlap between the input state ρ and the output state ρ ′ = ∑r prρ

′
r =∑

rµ ArµρA
†
rµ :

Fρ = Tr [ρ ′ρ] =
∑
rµ

Tr
[
ArµρA†

rµρ
]
. (3)

The fidelity Fρ and Gρ are all dependent on the special choice of the input state ρ. In total, the
relevant quantities that evaluate the measurement procedure with respect to the whole state set
� can be given by further averaging over all the possible states, or namely, over the set �:

F =
∫

�

dρ
∑
rµ

Tr
[
ArµρA†

rµρ
]
, (4)

2
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G =
∫

�

dρ
∑
rµ

Tr
[
A†

rµArµρ
]
Tr[ρρr ]. (5)

In the literature, these two quantities, F and G, are always referred to as output fidelity and
estimation fidelity, respectively‘ [3]. Quantum mechanics imposes some constraints on the
relation between F and G. For a given value of F , there exists an upper bound value for G and
no physically reliable measurement can be found to beat such an upper bound. Intuitively,
with the F increasing from its minimum to maximum, the physically achievable supermium
value of G will violate from its maximum to minimum. The exact tradeoff between F and G
is naturally imposed by quantum mechanics and is what we are mainly concerned.

In [7], based on Jamiołkowski representation [22] and Schur’s lemma [23] for unitary
group representation, Sacchi exploited the covariant quantum operators and obtained the
optimal information–disturbance tradeoff in estimating an unknown maximally entangled
state. In this paper, we use an alternative approach and regain the optimal tradeoff bound
for the estimation of the completely unknown maximally entangled state. Our result will be
obtained, in a similar way as Banaszek utilized in [3], by the direct derivation of quantum
fidelities and by means of the Cauchy–Schwarz inequality. It turns out that the Cauchy–
Schwarz inequality will become an equality when the optimal tradeoff is attained. We then
suggest a quantum circuit implementation for the estimation of unknown entangled states.
Our schemes are optimal in the sense that corresponding fidelities saturate the bound of the
tradeoff.

This paper is organized as follows. In section 2, we will adopt Banaszek’s method [3]
and give an re-examination of the tradeoff for the maximally entangled state. In section 3,
we describe the quantum logic circuit realization which only involves single- and two-particle
logic gates and single-particle measurements. The simplest example for the D = 2 (qubits)
case is described in detail, whereas its generalization to an arbitrary D-dimensional case is
given briefly. Finally, a conclusion follows in section 4.

2. Rederivation of the tradeoff for the maximally entangled state

Let us now first provide some notations that will be frequently utilized in the rest of the
paper. When considering the bipartite pure state, it is convenient to exploit the notation of
the Liouville space [24, 25] . According to the Liouville formalism, a bipartite state vector
in the Hilbert space HD ⊗ HD can be identified with a single-particle operator acting on HD .
In particular, for the maximal entanglement pure state, the identification is much more simple
and powerful. Each maximal entangled state |ψg〉 in HD ⊗ HD will then be uniquely written
as

|ψg〉 = 1√
D

|Ug〉〉 = 1√
D

Ug ⊗ I |I 〉〉, (6)

with Ug denoting a D × D unitary matrix and double ket representation defined by
|A〉〉 ≡ ∑ij 〈i|A|j 〉|i〉|j 〉. Here g is an element in the Lie group SU(D) and furthermore,
when g runs through the group SU(D), we run through the whole set of different maximal
entanglement states �. This is quite a useful conclusion and one will see that the integration
in equation (5) directly boils down to a group average over SU(D). With all these notations,
we can rewrite the fidelities in equation (5) with

F = 1

D2

∫
SU(D)

dg
∑
rµ

|〈〈Ug|Arµ|Ug〉〉|2, (7)

3
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G = 1

D2

∫
SU(D)

dg
∑
rµ

〈〈Ug|A†
rµArµ|Ug〉〉|〈φr |Ug〉〉|2, (8)

in which we have considered the normalized invariant Harr measurement dg over the group ,
namely,

∫
SU(D)

dg = 1 [23].
Before further precessing, there is one important assumption that should be justified here.

Here and after, we will investigate the projective measurement which involves only a single
value of µ in the sum equation (1), namely, the POVM {Ar}. Such an assumption will not
introduce the loss of any generality [18]. Actually, to justify this, one can use the polar
decomposition of an arbitrary operator Arµ = UrµPrµ, with U being unitary and P being
positive. If Prµ does not vary with µ, then the value of µ does not contain any additional
information about the initial state and can be neglected. If Prµ does vary with µ, then the
value of µ represents the information that is not gathered by the POVM {Ar}, but can be
gathered with a new POVM {Arµ} where both r and µ become measurement results and
where the upper bound for F and G can still be achieved. Furthermore, in terms of output
fidelity, the single term Kraus operator (see equation (1)) always give a minimally disturbing
way of the POVM measurement (see theorem 5 in [18]) . In what follows, we will omit the
second index µ and consider the POVM: {Ar} with trace preserving condition

∑
r Ar

†Ar = I .
We will now start by deriving the fidelities F and G. One can introduce the identity

operator
∑

mn |mn〉〈mn| = I ⊗ I and insert it into equation (7):

F = 1

D2

∫
dg
∑

r

∑
mn

∑
pq

〈〈Ug|mn〉〈mn|Ar |Ug〉〉〈〈Ug|A†
r |pq〉〈pq|Ug〉〉

= 1

D2

∑
mn

∑
pq

∑
r

〈mn|ArMmnpqA
†
r |pq〉. (9)

In equation (9), we define a D2 × D2 matrix Mmn,pq :

Mmnpq ≡
∫

dg〈〈Ug|mn〉〈pq|Ug〉〉|Ug〉〉〈〈Ug|

=
∫

dgTr12[(|mn〉〈pq| ⊗ I ⊗ I )(|Ug〉〉〈〈Ug| ⊗ |Ug〉〉〈〈Ug|)],

where in the second line we have extended the original Hilbert space and the subscript ‘12’
indicates that the partial trace is performed with respect to the first two Hilbert spaces. The
explicit form of Mmnpq can be further simplified with the help of Schur’s lemma for the unitary
group representation [23]:∫

dg|Ug〉〉〈〈Ug| ⊗ |Ug〉〉〈〈Ug| = 2

D(D − 1)
P

(1,3)
A ⊗ P

(2,4)
A +

2

D(D + 1)
P

(1,3)
S ⊗ P

(2,4)
S ,

where P
(i,j)

A is the projector on the D(D−1)

2 -dimensional asymmetry subspace of the Hilbert

space H(i)
D ⊗ H(j)

D and P
(i,j)

S = I ⊗ I − P
(i,j)

A is the D(D+1)

2 -dimensional symmetry subspace.
Note that the indices 1, 2, 3 and 4 here indicate the relevant Hilbert space which should be
distinguished from the qub(d)its of the quantum circuit implementation in section 3.

Then, with some algebra, we obtain that

Mmnpq = 1

D2 − 1

[
δmpδnqI ⊗ I + |mn〉〈pq| − 1

D
(δmpI ⊗ |n〉〈q| + δnq |m〉〈p| ⊗ I )

]
. (10)

4
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Putting equations (9) and (10) together, one finds

F= 1

D2 − 1

[
1 +

1

D2

∑
r

|Tr [Ar ]|2
]

− 1

(D2 − 1)D3


∑

r,p,i



∣∣∣∣∣
∑

q

〈iq|Ar |pq〉
∣∣∣∣∣
2

+

∣∣∣∣∣
∑

q

〈qi|Ar |qp〉
∣∣∣∣∣
2



 (11)

� 1

D2 − 1
+

D2 − 2

D4(D2 − 1)

∑
r

|Tr [Ar ]|2. (12)

Now let us turn our attention to the estimation fidelity fidelity G. According to
equation (6), we can also rewrite the maximally entangled state |φr〉 that we infer as

|φr〉 = 1√
D

|Wr〉〉 = 1√
D

Wr ⊗ I |I 〉〉. (13)

Substituting equation (13) into equation (8) and changing the integration measure according
to |Ug〉〉 → Wr ⊗ I |Ug〉〉, we will see

G = 1

D3

∫
SU(D)

dg
∑

r

〈〈Ug|A†
rAr |Ug〉〉|〈〈I |W †

r ⊗ I |Ug〉〉|2

= 1

D3

∫
dg
∑

r

〈〈Ug|
(
W †

r ⊗ I
)
A†

rAr(Wr ⊗ I )|Ug〉〉〈〈I |Ug〉〉〈〈Ug|I 〉〉

= 1

D3

∑
r

Tr
[((

W †
r ⊗ I

)
A†

rAr(Wr ⊗ I )
)
M�

]
, (14)

in which we have defined

M� ≡
∫

dg|Ug〉〉〈〈Ug|〈〈I |Ug〉〉〈〈Ug|I 〉〉 (15)

=
∫

dgTr12[(|I 〉〉〈〈I | ⊗ I ⊗ I )(|Ug〉〉〈〈Ug| ⊗ |Ug〉〉〈〈Ug|)]. (16)

By Schur’s lemma, the integral in M� can be easily evaluated, which yields

M� = 1

D2 − 1

[(
D − 2

D

)
I + |I 〉〉〈〈I |

]
. (17)

Hence,

G = 1

D2(D2 − 1)

[
(D2 − 2) +

∑
r

Tr
[((

W †
r ⊗ I

)
A†

rAr(Wr ⊗ I )
) |I 〉〉〈〈I |]

]

= 1

D2(D2 − 1)

[
(D2 − 2) +

∑
r

〈φr |A+
r Ar |φr〉

]
. (18)

In equations (12) and (18), we have already presented the expression of F and G. They
are both functions of the concrete measurement operator Ar . In fact, only the eigenvalue and
the corresponding eigenstate are concerned with the optimal tradeoff. In order to see this, we
can resort to the singular value decomposition (SVD) [26] of operators Ar . According to the
SVD theory, any complex matrix Ar can be rewritten as

Ar = Vr�rTr

5
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where Vr and Tr are both unitary matrices, and �r is a semipositive definite diagonal matrix

�r = diag
{
λr

0, λ
r
1, λ

r
2 . . . λr

D2−1

}
(19)

with its diagonal elements arranged in the decreasing order λr
0 � λr

1 � λr
2 � ...λr

D2−1 � 0. In
general, the elements λr

i are not the eigenvalues of Ar . However, since what we are concerned
is the optimal tradeoff, there will be no loss of generality if we considered the Hermitian
measurement operators. This is because, in equation (18)

〈φr |A†
rAr |φr〉 = 〈φr |T †

r �†
r�Tr |φr〉 �

(
λr

0

)2
(20)

and in equation (12)

|Tr [Ar ]| =
∣∣∣∣∣∣
D2−1∑
i=0

〈i|TrVr�r |i〉
∣∣∣∣∣∣ �

D2−1∑
i=0

λr
i |〈i|TrVr |i〉| �

D2−1∑
i=0

λr
i . (21)

Note that the last inequality sign in equation (21) is reached when Tr = V
†
r , which guarantees

that the operator Ar is Hermitian. From equations (20) and (21), it is clear that F is non-
decreasing and the optimality is preserved if we continue our proof with Hermitian measure
operators.

To complete our rederivation, it is convenient to introduce the vector representation that
has already been used in deriving the tradeoff for the single-particle pure state [3]. Define D2

real vectors vi = (λ0
i , λ

1
i , λ

2
i ...λ

D2−1
i

)
( i = 0, 1, · · · ,D2 − 1). The term of summation over

outcome {r} in equations (12) and (18) can now be evaluated as

f =
∑

r

|Tr [Ar ]|2 �
∑

r

(∑
i

λr
i

)2

=
D2−1∑
i,j=0

vivj , (22)

g =
∑

r

〈φr |A+
r Ar |φr〉 =

∑
r

(
λr

0

)2 = |v0|2. (23)

By the Cauchy–Schwarz inequality,

f �
D2−1∑
i,j=0

|vi||vj| =

D2−1∑

i=0

|vi|



2

=

√

g +
D2−1∑
i=1

|vi|



2

(24)

and moreover

D2−1∑
i=1

|vi| �

√√√√(D2 − 1)

D2−1∑
i=1

|vi|2 =
√

(D2 − 1)(D2 − g). (25)

We then have √
f � √

g +
√

(D2 − 1)(D2 − g). (26)

Finally, by substituting equations (22) and (23) into equations (12) and (18), we have

F= 1

D2 − 1
+

D2 − 2

D4(D2 − 1)
f,

G = 1

D2(D2 − 1)
[(D2 − 2) + g], (27)

and optimal tradeoff between operation fidelity and estimation fidelity can be retrieved from
equation (26):√(

F− 1

D2 − 1

)
D2

D2 − 2
�

√
G − D2 − 2

D2(D2 − 1)
+

√
(D2 − 1)

(
2

D2
− G
)

. (28)

6
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Figure 1. The quantum circuit constructed for achieving the optimal tradeoff for maximally
entangled state (D = 2).

Up to now, we have re-examined the optimal tradeoff for themaximal entangled state which
has already been obtained by Sacchi in [7]. The equality sign holds when the D2 vectors
v0, v1, v2, . . . , vD2−1 are colinear. In the following, we will show that the optimal tradeoff is
physical implementable by constructing a concrete quantum circuit.

3. Quantum circuit in estimating maximally entangled states

In this section, we propose a quantum circuit for realizing the optimal estimation of the
entangled state. First, we give a description of the simplest case of D = 2 in detail. Then,
we show that the scheme can be easily generalized to entangled qudits and we describe the
corresponding circuit briefly.

The scheme, shown in figure 1, consists of four CNOT gates, two Hadamard gates and
two single-qubit measurements. Qubits 1 and 2 are the unknown maximal entangled states
that are to be measured. To implement the tradeoff, we further introduce two auxiliary qubits,
qubits 3 and 4 , which are initially prepared in a partial entanglement state

|w〉34 = cos θ |00〉 + γ sin θ |+ +〉, γ =
√

1 + 4 tan2 θ − 1

2 tan θ
,

where |+〉 = 1√
2
(|0〉 + |1〉) and θ

(
0 � θ � π

2

)
is a control parameter which determines the

entanglement degree of the ancillary qubit. We will see that this is also the very parameter that
determines the information transfer between the estimation fidelity and output fidelity. The
ancillary qubits and input state are coupled with two CNOT gates. After the unitary evolution,
both the ancillary qubits 3 and 4 are measured along the {|0〉, |1〉} basis, whereas qubits 1 and
2 are then projected to a disturbed version of the original maximal entangled state ρ ′.

For simplicity, let Ci,j denote the CNOT gate with the index i(j) indicating the control
(target) qubit. Hi represents the Hadamard gate acting on the qubit i. The unitary evolution of
the quantum circuit in figure 1 follows

U = C21H2C13C24H2C21. (29)

Assuming the measurement outcomes of qubits 3 and 4 are (m, n), the measurement operators
Amn can be given by

Am,n = (I12 ⊗ 34〈m, n|)U (I12 ⊗ |w〉34) . (30)

7
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Particularly, in D = 2 cases, the measurement outcome (m, n) will only take values from
(0, 0), (0, 1), (1, 0) and (1, 1). In the standard basis of {|00〉, |01〉, |10〉, |11〉}, we can express
the corresponding Kraus operators as follows:

A00 = 1

2




cos θ + γ sin θ cos θ

γ sin θ

γ sin θ

cos θ cos θ + γ sin θ


 ,

A01 = 1

2




cos θ + γ sin θ − cos θ

γ sin θ

γ sin θ

− cos θ cos θ + γ sin θ


 ,

A10 = 1

2




γ sin θ

cos θ + γ sin θ cos θ

cos θ cos θ + γ sin θ

γ sin θ


 ,

A11 = 1

2




γ sin θ

cos θ + γ sin θ − cos θ

− cos θ cos θ + γ sin θ

γ sin θ


 .

(31)

It should be noted that these operators coincide well with those obtained in [7]. Plugging
equation (31) into equation (11), one can find that the output fidelity for operators
{A00, A01, A10, A11} will be

F =1 − cos2 θ

2
. (32)

In order to maximize the estimation fidelity, the optimal inference rule can be constructed as
follows. When the measurement outcome (m, n) is observed, one infers that the state φr is
Amn’s dominant eigenstate (the eigenstate corresponding to the maximal eigenvalue):

(0, 0) −→ |φ00〉 = 1√
2
(|00〉 + |11〉),

(0, 1) −→ |φ01〉 = 1√
2
(|00〉 − |11〉)

(1, 0) −→ |φ10〉 = 1√
2
(|01〉 + |10〉),

(1, 1) −→ |φ11〉 = 1√
2
(|01〉 − |10〉).

(33)

It is straightforward to verify, from equations (18) and (31) , that the estimation fidelity

G =1

2
− γ 2 sin2 θ

4
. (34)

Equations (32) and (34) say that F and G are both determined by the parameter θ and any
ratio between them can be achieved by suitable superposition of the ancillary qubits. First, let
us consider two extreme cases. (1) θ = π/2. At this point, the original state is completely
preserved and thus F = 1. However, at the same time, the inference rule has to be a randomly
guessing and estimation fidelity is G = 1/4. This corresponds to the case of the non-
informative measurement. The other extreme case is (2) θ = 0, which gives F = G = 1/2.
The information of the unknown entangled state is maximally extracted whereas the output
state is also maximally disturbed. In this case, the optimal measurement is the projective
entanglement measurement or Bell measurement. 0 < θ < π/2 is the intermediate case and
the optimal tradeoff interpolates smoothly between those two extreme cases.

8
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Figure 2. The quantum circuit for achieving the optimal tradeoff for an arbitrary D-dimensional
maximally entangled state.

Upon eliminating θ , we obtain

F + 2G −
√

(1 − 2G)(1 − F) = 3
2 . (35)

This F– G relation in equation (35) corresponds to the bound equation (28) with the equal
sign and thus confirms the statement that the scheme in figure 1 is actually optimal.

We will now explore the possibility of generalizing the optimal measurement scheme
shown above to an arbitrary D-dimensional situations. But first of all, we need to introduce
some elementary quantum logic gates for general operations. The first one is the two-qudit
CNOT gate [27]. This is the one of the fundamental bipartite interaction. In the computation
basis {|m〉|m = 0, 1, . . . , D − 1}, such a unitary interaction is given by

Ci,j =
∑
i,j

|m,m ⊕ n〉〈m, n|, (36)

where ⊕ denotes sum modulo D. This is a straightforward generalization of CNOT gate from
its 2-dimensional cases. Another operation that should be notified is the Fourier transformation.
This is a single qudit unitary operation

F = 1√
D

D−1∑
m,n=0

e
i2πmn

D |m〉〈n|, (37)

with its inverse given by

F−1 = F† = 1√
D

∑
m,n

e− i2πmn
D |m〉〈n|. (38)

The D-dimensional measurement scheme shown in figure 2 is similar to that of figure 1
except that the Hadamard gate is replaced by the Fourier gate and CNOT operation is
automatically advanced to its D-dimensional variant. Similarly, auxiliary qudits 3 and 4
are initially prepared in the partial entanglement

|w〉34 = cos θ |00〉 + γ sin θ |+ +〉, γ =
√

1 + D2 tan2 θ − 1

D tan θ
,

where |+〉 = 1√
D

∑D−1
i=0 |i〉, and θ takes value from 0 � θ � π

2 .
The corresponding measurement operators in figure 2 can be obtained from equation (30)

with U = C21.F2.C13.C24.F2.C21. After direct calculation, we have

Amn = 1

D
(cos θ |Umn〉〉〈〈Umn| + γ sin θ · I ⊗ I ) , (39)

in which we define

Umn =
D−1∑
k=0

e
i2πnk

D |k〉〈k ⊕ m|, (40)

9
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with m, n = 0, 1, . . . ,D − 1 denoting the measurement results of qudits 3 and 4, respectively.
This implements the Kraus operators which interpolate between the identity map and projective
measurement for the maximal entanglement state, and which was originally proven to be
optimal in estimating the maximal entanglement state in [7].

Assuming the inference rule to be

(m, n) → |φmn〉 ≡ 1√
D

|Umn〉〉 = 1√
D

∑
k

e
i2πnk

D |k〉|k ⊕ m〉, (41)

one can evaluate the operation fidelity and estimation fidelity from equations (11), (18) and
(39) that

F = 1 − D2 − 2

D2
cos2 θ, G = 2 − γ 2 sin2 θ

D2
. (42)

It can easily be checked that the equality sign in equation (28) is saturated and the scheme
presented in figure 2 is the optimal quantum circuit.

4. Conclusion

In conclusion, we have retrieved information–disturbance tradeoff for estimating an unknown
maximally entangled state. Moreover, we also show the quantum scheme for physically
achieving such tradeoff. The scheme is based on a quantum circuit that involves single- and
two-particle logic gates and ancillary particles and single-particle measurements.
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